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In this paper we present a self-consistent simulation model of colliding beams in
high energy accelerators. The model, which is based on a particle-in-cell method,
uses a new developed shifted-Green function algorithm for the efficient calcu-
lation of the beam-beam interaction. The model uses transfer maps to treat
the external focusing elements and a stochastic map to treat radiation damping
and quantum excitation of the beams. In the parallel implementation we stud-
ied various strategies to deal with the particular nature of the colliding beam
system — a system in which there can be significant particle movement between
beam-beam collisions. We chose a particle-field decomposition approach instead
of the conventional domain decomposition or particle decomposition approach.
The particle-field approach leads to good load balance, reduced communication
cost, and shows the best scalability on an IBM SP3 among the three parallel
implementations we studied. A performance test of the beam-beam model on
a Cray T3E, IBM SP3, and a PC cluster is presented. As an application, we
studied the effect of long-range collisions on antiproton lifetime in the Fermilab
Tevatron.

I. INTRODUCTION

High energy accelerators are essential to study the inner structure of nuclear and elementary
particles in modern physics. In a high energy collider, two counter-rotating charged particle beams
moving at speeds close to the speed of light collide at one or more interaction points where detectors
are located. The rate at which particle production and other events occur inside the detectors
depends on a proportionality factor called the luminosity. Maximizing luminosity is therefore a
key issue in high energy colliders. The electromagnetic interaction between two beams, i.e. the
beam-beam interaction, places a strong limit on the luminosity. An accurate simulation of the
beam-beam interaction is needed to help optimize the luminosity in high energy accelerators.

The beam-beam interaction has been studied for many years. However, the extreme compu-
tational cost required to accurately and self-consistently model the beam-beam interaction as the
beams circulate for many (typically 10* to 10°) turns has caused most previous studies to use
simplified models. Examples include “weak-strong” models, in which only the “weak” beam is
affected by the higher intensity “strong” beam [1-4], soft Gaussian models, where one beam is
assumed apriori to have a Gaussian shape, and the pancake model [5-11]. To study the beam-
beam interaction fully self-consistently for both beams (i.e. a “strong-strong” formulation), and to
include all the physical processes of long range off-centroid interactions, finite beam bunch length
effects, and crossing angle collisions, requires computation resources far beyond the capability of
current serial computers. As far as we know, there is no previously developed code that can si-
multaneously handle all of these physical processes accurately. In this paper we present a parallel
beam-beam simulation model, with weak-strong and strong-strong capabilities, that can simulate
these physical processes accurately using high performance computers.

The organization of the paper is as follows: The physical model and computational methods
are described in Section 2. The parallel implementation is given in Section 3. An application to
the study of the effect of long-range collisions on antiproton lifetime in the Fermilab Tevatron is
given in Section 4. We summarize our results in Section 5.



II. PHYSICAL MODEL AND COMPUTATIONAL METHODS

In our model of beam dynamics in an accelerator, each charged particle is characterized by its
charge, mass, and phase space coordinates (z,z’,y,y’,Az/o,,Ap,/op.). Here, the independent
variable, s, is the arc length along a reference trajectory inside the accelerator, and a superscript
prime denotes 9/0s, Az = s — ct(s) with ¢ the speed of light, Ap, = |p| — pp with pg the absolute
momentum value of the reference particle. The motion of particles will be determined by several
factors, all of which must be included in the model. Externally applied magnetic fields guide
the beam and provide transverse and longitudinal focusing. Particles will also lose its energy
through synchrotron radiation, a process that involves radiation damping and quantum excitation.
The Coulomb interaction among the charged particles within a bunch is negligible due to the
cancellation of the electric and magnetic forces at relativistic speeds. However, in the collisions
with the oppositely moving beams, the electric and magnetic forces add up. The resulting beam-
beam force is a strongly nonlinear interaction that can significantly affect the motion of the charged
particles. Fig. 1 gives a schematic plot of two colliding beams with a finite crossing angle. In the
figure, « is the collision crossing angle, and IP is the interaction point.

To calculate the electromagnetic force from the beam-beam interaction, we have used a multiple
slice model. In this model, each beam bunch is divided into a number of slices along the longitudinal
direction in the moving frame as shown in Fig. 1. Each slice contains nearly the same number of
particles at different longitudinal locations Az. The collision point between two opposite slices 4
and j is determined by

1 _
Se = §(Azz+ — Azy) (1)
The transverse coordinates of the particles at the collision point are given by
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The slopes of the particles are updated using the beam-beam electromagnetic forces at the collision
point following
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In the above equations, a subscript 2,1 represents contributions from beam 1 or beam 2, v =
1/3/1 =32, Bi = vi/c, i = z,y,2, c is the speed of light, €y is the vacuum permittivity, ¢ is the
charge of the particle, m is the rest mass of particle, NV is the number of particles in a bunch, and
E; and E, are the transverse electric fields generated by the opposite moving beam. After the
collision, the particles of each slice drift back to their original locations according to

T = 2°— 8¢ Thoy (8)
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FIG. 1: A schematic plot of the two colliding beams with finite crossing angle.

The electric fields generated by the opposite moving beam can be obtained from the solution
of Poisson’s equation. The solution of Poisson’s equation can be written as

May) = [ Gla.z.0.0)0(,9) dadg (10)

where G is the Green’s function and p is the charge density. For the case of transverse open
boundary conditions, the Green’s function is given by:
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Now cousider a simulation of an open system where the computational domain containing the
particles has a range of (0, L;) and (0, L), and where each dimension has been discretized using
N, and N, points. From Eq. 16, the electric potentials on the grid can be approximated as
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where z; = (¢ — 1)h; and y; = (j — 1)h,. This convolution can be replaced by a cyclic convolution
expression in a double-gridded computational domain [12]:
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pc(xiayj) = Pc(xi + Z(Lw + hw)ayj + Z(Ly + hy)) (16)
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These equations make use of the symmetry of the Green function in Eq. 17. From the above
definition, one can show that the cyclic convolution will give the same electric potential as the
convolution Eq. 18 within the original domain, i.e.

The potential outside the original domain is incorrect but is irrelevant to the physical domain.
Since now both G and p. are periodic functions, the convolution for ¢. in Eq. 19 can be computed
efficiently using an FFT as described by Hockney and Eastwood. [12].

In the above FFT-based algorithm, the particle domain and the electric field domain are con-
tained in the same computational domain. Here, the particle domain is the configuration space
containing the charged particles, and the field domain is the space where the electric field is gen-
erated by the charged particles. In the beam-beam interaction, the two opposite moving beams
might not overlap with each other. For example, in the long-range interaction, the two colliding
beams could be separated by more than several o, where o is the rms size of the beam. Thus the
field domain where the electric field is generated by one beam can be different from the particle
domain containing the beam. Fig. 2 gives a schematic plot of the two separated domains. In this
figure, the particle domain has a range from —R to R for x and y, and the field domain has a
range from 0 to 2R for # and y, where R is maximum extent of the beam. The origin of the field
domain in this figure is . = R, y. = R, where the origin is chosen to be at the beam centroid.
In the beam-beam simulation, the origin of the field domain can be at an arbitrary location and
varies from turn to turn. To apply Hockney’s algorithm directly will require the computational
domain to contain both the particle domain and the field domain, i.e. both beams. Since there is
a large empty space between two beams, containing both beams in one computational domain will
result in a poor spatial resolution of the beams. This is also computationally inefficient because
the electric fields in the empty space between two beams are not used.

To avoid this problem, we have defined a shifted Green function as

Golos7,99) = —g (et~ 2+ ey~ 5)?) (19)

where x, and y,. are the center coordinates of the field domain. The electric potential in the field
domain is written as
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Using the shifted Green function, the center of the field domain is shifted to the center of the
particle domain. The range of z and y cover both the particle domain and the field domain in one
computational domain. The FFT can be used to calculate the cyclic convolution in Eq. 19 using
the new Green function. Here, on the doubled grids, the Green function is given as
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To summarize, using the shifted Green function:

e avoids the requirement that the particle domain and the field domain be contained in one
big computational domain,
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FIG. 2: A schematic plot of the particle domain and the field domain.

e leads to better numerical resolution for the charge densities and the resulting electric fields
than the conventional method, because the empty space between the beams is not included
in the calculation,

e is far more efficient, in terms of computational effort and storage, than the traditional ap-
proach of gridding the entire problem domain.

As an example of the above FFT-based algorithms, we have computed the radial electric field
distribution generated by a round beam with a Gaussian density distribution using the particle
domain and the field domain shown in Fig. 2. Fig. 3 shows the radial electric field E, as a function
of distance along the diagonal line of the field domain using the the shifted Green function, and
128x128 grid. The electric field from the analytical calculation is also given in the same figure
for comparison. It is seen that the agreement between the numerical solution and the analytical
calculation is excellent.

The effects of external fields can be represented, in the small-amplitude approximation, by a
one-turn linear map, i.e.

Tnt1 = (cos(2mvyg) + ay sin(27vy,)) @y + B sin(27vg,) T, (22)
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where ag, 5 and v, are lattice functions at the interaction point, and vy, is horizontal lattice tune.
A similar map applies to the vertical phase space y and y' by replacing # — y in above equations.
For the longitudinal phase space, the one-turn map is defined by

Az/o, _ cos(2mvg)  sin(2mvg) Az/o,
(Apz/Upz >n+1 N (—Sin(27rus) cos(2mvy) > (Apz/apz )n (24)

where v is the synchrotron tune.
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FIG. 3: Radial electric field as a function of distance along the diagonal line of the particle domain.

The effects of radiation damping and quantum excitation can be represented using a localized
stochastic map. For each particle, with lattice function «, = «, = 0, the map consists of the

following transformations [5]:
Tpt1 = Agp +711044/1 — A2
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where the o’s are the nominal rms equilibrium beam sizes in each dimension, the A’s are given in
terms of the damping time 7 (measured in units of turns) by A\; = exp (—1/7;) where i denotes z,
y, or z, and the r’s are independent random numbers satisfying

(ri) =0 (31)
(rirj) = 0ij (32)

The first term in above transformation represents the radiation damping, and the second term
represents the quantum excitation.

III. PARALLEL IMPLEMENTATION

Following the above physical model, we have used a particle-in-cell method to calculate the
electromagnetic fields at the beam-beam interaction point. Outside the interaction point, the
particles are transported through the accelerator using the one-turn lattice map and the radiation
damping/quantum excitation map. The fact that the lattice map can cause significant particle
movement has important ramifications for the parallelization strategy. During the development
of the code we have studied the performance of three methods: domain decomposition, particle
decomposition, and particle-field decomposition.



In the domain decomposition approach the spatial domain is divided into a number of subdo-
mains, with each subdomain mapped onto a single processor [13, 14]. The particles with their
spatial positions inside the subdomain are assigned to that processor. When particles move out
of their spatial subdomain, they are sent to the processor containing the corresponding spatial
subdomain. After all particles are local to each processor, the Poisson equation is solved on the
grid and the particles are advanced using the electromagnetic fields. To improve the efficiency, a
load balance scheme can be used to ensure that each processor contains about the same number
of particles. The domain decomposition works well when the particles do not move too far from
their positions during each time step. This means that only neighboring processor communication
is required. However, in the simulation of colliding beams, after each turn the particles can move
a long distance due to the action of external maps. (The colliding beam code is a quasi-static
particle-in-cell code, not a fully electromagnetic code, there is no Courant condition. The large
movement of particles is not an artifact of the numerical implementation, but instead is a physical
effect associated with the fact that particles undergo many oscillations as they are transported
around the collider between beam-beam collision points.) A lot of communication is required to
move these particles to their local processors. Meanwhile, even though the domain decomposition
approach can achieve a load balance of particles, the solution of the Poisson equation is not bal-
anced since each processor has a different number of computational grids, i.e. a different size of
subdomain.

Perfect load balance can be achieved, and particle movement avoided, by using a particle decom-
position approach [15]. In this approach, the particles are uniformly distributed among processors.
Each processor contains the whole spatial domain. To solve the Poisson equation, the particles
are deposited onto the global computational grid, collected and broadcast to all processors. Each
processor now owns the charge deunsity distribution of the whole domain, and the Poisson equation
is solved within this domain. Unfortunately this implementation does not take advantage of the
parallelism in the solution of the Poisson equation. To overcome this drawback, in this paper we
have proposed a particle-field decomposition approach as the strategy that is best suited to the
parallel implementation of the particle-in-cell method for modeling colliding beams.

In the particle-field decomposition approach, each processor possesses the same number of par-
ticles and the same number of computational grid points, i.e, the same size of spatial subdomain.
In the process of solving the Poisson equation, the particles are deposited onto the computational
grid to obtain the charge density distribution. For the particles with spatial positions outside the
local subdomain, an auxiliary computational grid is used to store the charge density. After the
deposition, the charge density stored on the auxiliary grid will be sent to the processor containing
that subdomain. With charge density local to each processor, the Poisson equation is solved in par-
allel on a local subdomain using the shifted Green function method. Since each processor contains
the same number of computational grid points, the work load is well balanced among all processors.
The solution of the electric potential on the local subdomain is sent to all processors. With the
electric potential on each processor, the electric field is calculated on the grid and interpolated
onto individual particles of the opposite beam. The particles are advanced using the electromag-
netic field and the external maps. Since each processor contains the same number of particles,
the work of this process is also well balanced among processors. The volume of communication
in the particle-field decomposition approach is proportional to the number of computational grid
points instead of the number of moving particles in the domain decomposition approach. Since,
in the study of beam-beam interactions, the number of particles is much larger than the number
of computational grid points, e.g. 105 versus 10%, the particle-field decomposition approach can
significantly reduce the communication cost in the simulation. Fig. 4 shows a comparison of the
speedup as a function of number of processors on an IBM SP3 computer using above three paral-
lel implementation approaches for a single slice beam-beam model with one million particles and



128 x 128 grid points. We see that the particle-field decomposition method has the best scalability
among three implementations. The speedup of the domain-decomposition approach saturates at
16 processors due to the large amount of time spent moving the particles among the processors
and the unbalanced work load.

Having adopted the particle-field decomposition approach, we next divide the total number of
processors into two groups, with each group respousible for one beam, and each processor in a
group containing the same number of particles. We furthermore divide each beam longitudinally
into a specified number of slices. The processors in each group are arranged logically into a two-
dimensional array with each column of the array containing a number of slices which are assigned
to this column of processors cyclically along the row direction. This gives a good load balance of
slices among different column processors. Within each column, the computational grid associated
with each slice is decomposed uniformly among all the column processors. This provides the
parallelization in the solution of the Poisson equation.

As a test of the parallel performance, we have measured the speedup as a function of processors
on Cray T3E, IBM SP, and a PC cluster at Lawrence Berkeley National Laboratory. The results
are given in Fig. 5. Here, we have used five slices for each beam with two million particles and
computational grid of size 64 x 64. We see that, on the PC cluster and the Cray T3E, the program
scales up to 128 processors with an efficiency of 70% — 80%. The slightly better performance of the
PC cluster is probably due to the fact that each PC cluster node has two shared memory processors
with nodes connected through a low latency high bandwidth Myrinet 2000 network. The initial
superlinear behavior on the IBM SP is due to the finite cache size effects on a small number of
processors. Beyond 64 processors there is degradation in performance on the SP. This might be
due to conflict in the use of the switch during communication when many nodes are used, since
each node contains four processors with one switch to communicate with the other nodes. Further
performance optimization on the SP is under way and will be reported in the final version of the

paper.

IV. APPLICATIONS

Our parallel beam-beam code has been applied to study several accelerators including the
Tevatron at Fermi National Accelerator Laboratory, the Relativistic Heavy lon Collider (RHIC)
at Brookhaven National Laboratory, and the Large Hadron Collider (LHC) under construction at
CERN. Most recently, we have performed extensive simulations to understand the effect of long-
range collisions on the antiproton lifetime, and hence the integrated luminosity, in the Tevatron, as
a function of several operating parameters. As seen in Fig. 6, our calculation of antiproton lifetime
as a function of proton intensity is in good agreement with experimental results.

In regard to the LHC, our code has been used to study the efficacy of a beam sweeping procedure
that will be used to monitor luminosity when the LHC is in operation [16]. We have furthermore
recently used our code to perform the first-ever strong-strong beam-beam simulations involving
one million particles propagating for one million turns.

V. SUMMARY

In this paper, we have presented a parallel simulation model to study beam-beam effects in high
energy colliders. The electromagnetic fields between the two colliding beams are calculated using
a parallel particle-in-cell approach with a new developed shifted-Green function algorithm. Using
high performance computers, we have studied physical processes such as long range off-centroid col-
lisions, finite bunch length effects, and crossing angle collisions, processes which cannot be modeled
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on a serial computers. In the parallel implementation, a particle-field decomposition approach has
been proposed. This approach shows better scalability than the domain decomposition approach
and the particle decomposition approach due to the nature of the particle movement in the beam-
beam code. A preliminary performance test of the multi-slice beam-beam model shows reasonable
scalability up to 128 processors on a Cray T3E and a PC cluster. A further performance study will
be carried out to improve the scalability of the code on an IBM SP3 and will be presented in the
final version of this paper. As an application, we have studied the effect of long-range collisions
on antiproton lifetime in the Fermilab Tevatron. The computational results and the experimental
results are in good agreement. In conclusion, the development of a parallel code that simultane-
ously treat the effects of multiple beam-beam phenomena (head-on collisions, long-range collisions,
crossing-angle effects, finite bunch length effects, etc.), represents a new and powerful capability
that will be useful for understanding and improving the operational characteristics of present and
future colliders.
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